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ATTITUDEDETERMINATIONFROMSPECULARANDDIFFUSE

REFLECTIONBY CYLINDRICALARTIFICIALSATELLITESI_ 2

by

R. H. Giese_

Formulae for attitude determination from optical observations are

presented for cylindrical artificial satellites with specular reflection.
The results allow attitude determination from the observed topocentric

coordinates of the reflection flashes and the direction of the sun.

Precise knowledge of the orbital data is not needed, and in many cases no

expensive optical instruments are necessary to obtain the information on

attitude.

For diffuse reflecting cylinders the formula for the intensity as a

function of arbitrary angles of illumination and observation is derived

and applied to numerical computations of a tumbling cylinder. _CY

i. Introduction

The trails of some artificial satellites show a continuous or tempo-

rary series of light flashes. These can be attributed to changes in the

reflecting conditions due to the satellite's orbital and spinning or tum-

bling motions. Such flashing outbursts can be used under favorable con-

ditions for attitude determination (Davis, Wells, and Whipple, 1957). An

analysis of this type was applied to the carrier rocket of Sputnik III

(1958 81) by Zessewitch (1958), and Notni and 01eak (1959).

iMitteilungen des Astronomischen Instituts der Universita't Tubingen No. 66

2This work was supported in part by grant NsG 87-60 from the National

Aeronautics and Space Administration.
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Consultant, Smithsonian Astrophysical Observatory, Cambridge, Mass.
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This study of the reflection by cylindrical satellites was made with

the purpose of finding new methods or generalizing those mentioned above.

The theoretical considerations involve specular cylinders, both circular

and polygonal, with and without reflecting ends. The method suggested by

Davis, Wells, and Whipple (1957) can be generalized in order to use ob-

servations from distant stations and from different passes of the satellite.

Baker-Nunn and Moonwatch observations of Tiros I (1960 _2) are discussed

in the appendix. The results show that even observations obtained by the

inexpensive equipment of a Moonwatch station can be useful for attitude

determination of spinning satellites. In the case of tumbling satellites,

a method for evaluating photographic exposures (i.e._stationary Baker-Nunn

films) and computing the tumbling axis and tumbling period will be dis-

cussed.

For diffuse reflecting satellites it is not possible to determine
the attitude from the sole fact that reflection is observed at a known

angle. A formula for computing the entire light curve of a tumbling

cylindrical satellite is presented and illustrated by numerical examples.

Similar computations, taking into account the shape and orbital motions

of a special satellite, might offer information on tumbling motion when

theoretical light curves are compared with photometric observations.

Such methods have been applied previously to asteroids, where, however,

most observations were made close to opposition and where it was therefore

not necessary to consider such general conditions of illumination as are

examined here. Section 2 deals with t_e coordinate systems, their trans-

formations, and the symbols employed in this paper. Section 3 discusses

specular reflection and provides the formulae for attitude determination

of tumbling and spinning cylinders. In Section 4 we will consider the

case of diffuse reflection using Lambert's law.

The formulae derived in this preliminary report will be used in a

future discussion of an economical ground-based system for optical atti-

tude determination of satellites carrying no attitude sensors aboard.

2. Basic seometrF and definitions

A. Coordinate systems

In the following investigation we shall use three rectangular

right-hand coordinate systems:

The equatorial system

The frame of unit vectors (Cl,C2,_q)has its origin in the center

(i.e., of mass) of the satellite, cI points to the vernal equinox, and

c3 is parallel to the north direction of the earth's axis.
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The rotational system

This frame of unit vectors (c ,4, _,_
i c2' cB j also originates from the center

of the satellite, while cI points towards the ascending node between the

plane in ,which the satellite is spinning or tumbling and the equatorial

plane, c3 points in the directTon of the angular velocity vector of the

spinning or tumbling motion. All symbols referred to in this system will

be marked with a prime.

The body svstem

This frame of unit vectors LCl,C2,C3_ is rigidly connected with the

satellite. It has its center in the,,satellite's center. If a tumbling

satellite has rotational symmetry, cB points parallel to the symmetry

axis and cI parallel to the tumbling axis. All symbols referred to in

this system will be marked with a double prime.

Figure 1 illustrates the systems for a tumbling cylinder.

B. Direction-angles and unit vectors

To define any direction we either use unit vectors u in the

t l ), or _x ,/_ ,iz j•above three systems with the components (x,y•z), (x ,y ,z' , ,i _, i,_

respectively, or• alternatively• we give direction-angles (a, 6), (a ',6 ),

or (at'•611), respectively• as shown in figure 2. The transformation

equations between dlrection-vectors and direction-angles are in the equa-

torial system

X ----COS 6 COS (X

y = cos 6 sin

• (1)

, (2)

z = sin 6 . (3)

Analogous transformations are valid in the rotational-plane and body-

fixed systems.

In the equatorial system, _ denotes the right ascension and 6 the
declination. For the unit vector R in the direction of the rotational

axis, we call the components in this system, X,Y,Z, and the direction-

angles A (right ascension) and D (declination). Whenever the components

of R are obtained, A and D can easily be determined from equations (1)

(3).
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C. Relations between the coordinate systems

With the use of the symbols defined above the Eulerian relations

yield:

(1) Transformation from equatorial to rotational plane coordinates

r>I
x - sin A + cos A

I

y = sin D cos A - sin D sin A

I

z cos D cos A + cos D sin A
Ol(x1cos y

sin z

(4)

(2) Transformation from the body system to the rotational plane

(the angle @ is defined as in Fig. 1 for a tumbling cylinder)

I I
x 0 sin t cos

y - 0 - cos _ sin

z 1 0 0

X H

yn

Z H

From equations (1) and (5) we obtain the transformations to be used
later:

cos 6u cos u = sin 6 t

cos 6" sin _ =cos 6' sin (_ - _')

sin 6" = cos 6'cos (i -_')

tan _" _ cot 6' sin (_ - or').

(6b)

(6c)

(e)

_r



D. Additional symbols

In addition to the above definitions and symbols, the following

will be used throughout this paper:

..-4

U S

U o _

-,4

unl

unit vector from satellite to sun;

unit vector from satellite to observing station;

..@

n

_O _

unit vector normal on a surface element of the satellite

(pointing outwards ) ;

normal vector (parallel Un, but not a unit vector);

subscript s is added to all components or direction-_les of u,

subscript o is added to all components or direction-angles of uo,

subscript n is added to all components or direction-angles of u _n

I ! I -')

(for example_ Xo, Yo, Zo are components of Uo expressed in the

rotational plane frame Cl, c2, c3, ;

180 ° + right ascension of the satellite as seen from the

•observing station;

_O _ (-1) x declination of the satellite as seen from the observing

station;

T , sidereal rotation or tumbling period;

w , angular velocity;

t , time;

where

(7)
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3. Specular reflection

A. The vector normal to the reflecting surface

..¢

If any specular reflection is observed, a vector n normal to the

reflecting surface can be determined by

-@

- u ÷ u° • (8)

--@ -@ .-#

According to the reflection law, n is coplanar with Us, Uo, and bisects
--@ --@

the angle between u s and Uo" Thus, in the case of specular reflection,

the unit vector normal to the reflecting surface is

-.p

-4 n

u =--. (9)
n T_'I

B. The plane mirror

Plane specular reflecting surfaces of a satellite can be used

for attitude determination. For example, one end of a spinning satellite

of cylindrical shape is assumed to reflect sunlight toward the observer.
..@

In this case, where R =u n (fig. 3), the direction of the spin axis unit

vector R can be found by equation (9):

(ilt= = (xs + xo)2÷(Ys÷Yo)2÷(Zs÷Zo)23 _Ys÷Yo " <io>

. \zs+Zo

Thus one single observation gives R in this simple instance.
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C. Tumbling plane mirror

Let us take the example of a black cylinder with one reflecting

end assumed to be tumbling about R' (fig. 4). If at a time t I a reflection

flash is observed, the normal n I is parallel to the symmetry axis c3 of

the cylinder. If at another time t 2 a second flash is observed, the

second normal n 2 is parallel to the orientation of c-'_ at t 2.

""* H

Since c3 is always perpendicular to R (tumbling condition), we obtain
_._ -@

a vector r parallel to the unit vector R by

r = n I x n 2 • (ii)

If the known direction vectors at the times t I and t 2 are u01 , us

_ Au
Us2 = Us + s' respectively, we obtain

r =

cI c2 c3

x01 ÷ x + Ys + zs Y01 Zo1 s

x02 + x + Ax + Ys + + z + Azs s Y02 AYs z02 s s

and u02,

, (12)

or

-" DlCl D2" D3-"r = + c2 + c3 ,

with

D 1 =

+i Ys Zs

-i YOI zOl

-i Y02 + AYs zOl + AZs

-7-



D2 =

-1 x z
S S

+i Xo1 Zo1

+i x__ + Ax • Az
s z02 s02

(15)

D3=

+i x YsS

-1 x01 Y01

-I x02 + axs Y02 ÷ nYs

(16)

Finally, we obtain the unit vector in the direction of the tumbling axis

= +D 2 +D " D2

I33

In this case two observations are necessary to determine R.

(17)

D. Spinning cylidder

let us assume a cylinder with black ends, but with reflecting
sides. In the case of the body system, equation (8) can be written as

n = (cos 6_ _" # _") "_cos + cos 6 cos eIS S O O-

6_ _ 6_ an) "n n 6_ _n
+'(cos s sin s + cos o sin o- c2 + (sin 6s + o) c3 (_8)

Since n is perpendicular to c3 (see fig. 6),

sin 6H + sin 6n = 0
S O

(19)
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Hence, given a direction-angle 6_ of the sun, we can observe reflection
S

at the direction-angle 8 H = -8 jj • From equation (18) we can find the
O S

position of the reflecting line on the cylinder side (fig. 6), and we

have

sin a x + sin x

tan a H = s o (20)

n cos a n + cos a n
s o

Equation (20) involves no limitation in this case, since the entire sur-

face of the side of the cylinder is assumed to be specular. Thus, equa-

tion (19) remains the sole condition for observing a reflection.

In the case of the wholly reflecting cylinder, reflection will be

observed on a complete cone. The axis of the cone is the cylinder axis,

and the opening angle is 90 ° - 6 . The intersection (see fig. 7) of this
s

light cone with the earth's surface may be called the "flash line," since

everywhere along this line a reflection-flash will be seen. Depending on

the direction of the orbital motion of the satellite, this flash line will

encounter an observation station once or _wice during one pass. Since

equation (19) states that normal vectors n derived from observed flashes
_H

must be perpendicular to c3 , and thus perpendicular to the spin axis, we

obtain from the normal vectors nI and n 2 (corresponding to the observation

times tI and t2) the vector r (equation (ll)) and

A method for obtaining _ from the observations of two neighboring

stations during the same pass has been presented by Davis, Wells, and

Whipple (1957). Their solution is contained in (17) as a special case

for Ax = Ay s = Az = O. The general solution (17), however, includesS s

the determination of R from different passes, even if considerably apart

in time and from the same or from different and distant stations, as long

as _ does not noticeably change its direction between the observations.

-9-



While in principle R can be obtained by two observations, it should

be noted that the method described above fails if the normal vectors _l

and n2 used in equation (ii) have approximately the same direction.

Since these normal vectors as computed from the observations are affected

by the error vectors 6_i, 6%, respectively, we obtain instead of _ (eq.

ii) a vector ( + 5nI) x ( + 6 ) which is different from r by

= % + x6% (22)

,r

This vector is approximately equal to _ only if !3! >> 16rl_, which is not
--_ _.

the case if n 1 is approximately parallel or _ntiparallel to n 2.

If more than two observations are available, the vector R might be

found by minimizing the sum

Z

[vv] = _ (Uni ._)2

i=l

(23)

If both R and all z normal vectors u . obtained from equation (9) are
n_

[w] 9o°.correct, equals zero, since (UniR) = cos The correct vector

can be found by systematic iterative trials, choosing appropriate pairs

of direction angles A,D. Since, however, the vectors Uni obtained by the

observations are affected by errors, the best pair A,D will hardly result

in [vv] = O, but will rather result in a minimum value of [vv].

While so far the problems discussed here, that of the tumbling mirror,

and even that of a spinning black cylinder with M discrete mirrors or

reflecting sides (fig. 5), result in the same equation (17), there remains

a marked difference in the effect described in equation (20). Although,

as indicated above, equation (20) is ineffective in the case of the wholly

reflecting cylinder, it strongly affects reflection in the case of a

cylinder such as that i_ figure 5. Even if the condition (19) is ful-

filled in the case of figure 5, a reflection will be observed only if one

of the mirrors happens to be at the position satisfying equation (20).

Thus, in the case of the cylinder in figure 5, reflection will be observed

only in the direction of M discrete rays each forming an angle (-6 u) with

the body system, s-
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If the sun were a point source of light, at a certain observing
station only an "infinite short" reflection flash would be visible in the
case of a spinning cylinder with reflecting sides, if equation (19) is
satisfied. Since, however, the sun is not a point source, the reflection
flash will last a finite time and thus cover a part of the finite length
of the satellite's trail. If the side of the satellite is covered with
discrete mirrors (fig. 5), or if the satellite is polygonal, this single
flash will disintegrate into several shorter flashes due to the spinning
rotation, since here equation (20) must also be satisfied.

Tiros satellites are exampleswhere the formulae for a spinning
cylinder maybe applied. All eighteen sides, as well as the top of these
polygonal cylinders have plane surfaces. They therefore meet the con-
ditions of the models studied above. It should be noted, however, that
since the bottom of the Tiros is a rather complicated supporting structure,
somedifficulties might arise if reflection from the bottom of the satel-
lite is observed. Figure 8 illustrates the shape of Tiros II (1960 _2),
and shows side surfaces and the base. Baker-Nunn films, madefrom Tiros I
(1960 B2), the structure of which is identical with Tiros II, show general
features that fit the theory. Figure 9a shows an outburst of flashes.
The single flashes might be attributed to the side surfaces. The increase
and decrease in intensity are due to the fact that equation (19) is ful-
filled only for a finite portion of the trail. Figures 9a and 9b verify
that just fifteen seconds after an outburst of specular flashes (9b) a
trail of steady intensity, presumably due to diffuse reflection, is
visible (9c).

In the case of a spinning cylinder with M reflecting surfaces (fig.

5), the rotational period T can be approximately determined from the time

difference (t2 - tl) between two consecutive flashes as T _ (t2 - tI) .M.

The satellite, however, moves along its orbit during this interval of

time, hence the exact sidereal period of rotation is

t 2 - t I

T - • (24)
1/M

From the normal vectors Unl and un2 , corresponding to tI and t2, the

angle A_ can be determined from

and

(25)

(26)
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If the direction of rotation is known, the remaining ambiguity of the
solution between A@and -A_ can be solved.

E. Tumbling cylinder

If the cylinder, instead of spinning about c3, tumbles about _"Cl3
we obtain the transformation of the reflecting condition il9) into the
rotational-plane system by meansof equation (6c). In this way we find
the rotational angle _ if a reflection flash is observed from the direc-
tlon vectors u and _ ±"

s o

cos 8_ sin _ + cos 8' sin _I
cot _f = - s s o o , (27a)

COS 8 i COS Ors ÷ COS 8 t COS (_I
S S 0 0

I I

Ys + Yo

cot _f =" ' t
x +x

s o

(27b)

From transformation (4), we obtain in the equatorial system:

sin D cos A (Xs+ xo) + sin D sin A (ys + yo ) - cos D (Zs+ zo)

cot @f =

cos A (ys+ yo ) - sin A (Xs+ xo)
( 27c

Equation (27c) is identical with the condition expressed in direction

angles _n' 8n of the normal to the cylinder surface Un, as found by

Zessewitch (1958):

cot @f = - tan 8 • cos D ÷ sin D cot (_n-A) (27d)

n sin(_n-A)

To find A and D, Notni and Oleak (1959) developed and successfully applied

a partially graphic method to the carrier rocket (1958 _l) of Sputnik III.

Another method appropriate for electronic computation is proposed as

follows:

-12-



In equation (27c) the numerator a_d denominator of the right side
functions f(A,D,Us,U o) and g(A,_s,Uo) , respectively, of the unknownare

direction-angles A,D, and of the components of the direction-vectors

_s'%' as observed at the time t of observation. We will assume that the

the _s,_o are correct. The angles A,D might be completely unknown. The

tumbling period as observed only approximates the true sidereal tumbling

period T, since the satellite changes its position during the time between

two reflection flashes. If during one pass z flashes are observed in the

satellite trail, we obtain from the first flash _f = @i and

fl = f(A'D' Usl, u01 ) , gl = g(A' Usl ,uOl) ,

hence

(28)
cot ¢I -

gl

and from the following flashes at the times ti (i = 2,3,...z), using
as fond from (28), i

( ( 1Ai = gi cos _i+ 2w - fi sin @i+ 2w _ •
(29)

A. would be zero if we substituted the correct values of T,A,D.
l

we do not know these, we try to minimize the sum:

Since

z

= (ai)2
i--2

(30)

For this we start with T equal to the observed, approximate tumbling

period, and determine by systematic trials the pair A,D that minimizes

[w]. With such a pair T will be improved, and then A,D, and so on.

As long as A,D are to be determined within an accuracy of some degrees,

the inaccuracy of about 1/3 minute of arc of the measured positions of

the flashes might be neglected. Thus, the use of only the first flash

for determining _i is not a severe restriction.

-13 -



An example of a tumbling cylinder is the carrier rocket of Echo I
(1960 _2), which tumbled after separation from Echo. Figure lO shows
the cylindrical side surface of the rocket and, in particular, the
flashing stripe due to specular reflection of the illuminating devices.
Baker-Nunn exposures of the flashes, due to the tumbling of this satel-
lite, appear in figures 9d and 9e.

4. Diffuse reflection

A. Lambert' s law

]
If P is the reflectivity (0 < P < l) and FLare a . time is

[ energy ]the incoming solar flux of light, the intensity dJ solid angle • time

reflected by a surface element dA of the diffuse reflecting area, is given

by Lambert 's law as

(31)

The scalar products (_s&) and (_o_n) give the cosines of the angles

between the incident light and the normal vector Un, and between the

light reflected in the direction towards the observer and un. These
angles are not necessarily equal, as in Section 3. In the case of diffuse

reflection, the condition for observing reflected light is

Otherwise, J = O, since the surface is either not illuminated or is not

visible to the observer, whether illuminated or not.

B. Plane end of a tumbling cylinder

For a plane end of a tumbling cylinder (fig. 4) we obtain from

equation (31), after transformation into the rotational plane system

(eq. 6c),

j =_ os cos (_-_ cos cos (_-
S O O

(33)

if both brackets > O. Otherwise, J = O.

-14-



Equation (33) can be written as

oos_, 0j[x,_, ,]_FPA ' @ + vs sin cos @ + Yo sin , (34)J
S O

and, if necessary, can be transformed by equation (4) into the equatorial

system. If both ends are taken into account, the equation is valid, but

only the product of the two brackets in (33) is required to be > 0 in

order to obtain an intensity J > O.

C. Side of a tumbling cylinder

If we consider the diffuse reflection by the side of a cylinder

of length _ and diameter d, we obtain from equation (31) in the body-fixed

system by a stripe

d_" (35)
aA=_ n

on the cylinder surface (fig. 6). T_e Imtemsity contribution

F°r,.x. -,;]dJ:-_ L s n + YsYnj o_ + Yo _ '
(36)

since the component of _ in the direction of c_ is z = O. Transformation
n J n

into direction-angles (eq. l) yields, after application of trigonometric
addition formulae and substitution of (35),

dJ _-_ cos s cos ( + -- as-_o) cos (_s o n (37)

The surface visible to the observer and illuminated at the same time lies

between the limits _' n < a," _; a _'_'+ 'n c_a cry,
s - 2 n o _ , if s > o ' and between

_ n _ a1_ _ _ + _ _I_ < a _. Using these limits of _u to integrate
ao -2 n s 5' if s o n

equation (37), we obtain

J - _v _os o cos s (_,-14"1)cos + Isin I (38)

-15 -



with

@" = a" - a" . (39)
o

Equation (38) is valid for both a _ _ a" and a" < a u. It includes, as a
S 0 S 0

special case (6" = 6 x = O, _" > 0), the result found by Laughlin and
s o

Bauer (1961). The variation of the Intensity with 7.]" ia shown in figure
ll.

If we consider a tumbling cylinder, we must transform equations (38)

and (39) by means of equations (6). This yields

COS = _
cos 6u cos 6u

s O

sin#n = A , (4010)
6n 6"cos cos
s o

tan _/" A (40c)

with

A = cos 6' sin 6' sin (*-as) -sin 6' cos 6' sin (_ _)S O S O -
(4lad

=sin 6' sin 6' ' ' %)- cos 6 cos 6 sin (i- sin (_- •
S O S O

(41b_

Finally,

with

J = _ (1_ - function ). B + IAI ,

A

function _ =

ifB>O

ifB =O

IfB<O

(_)

(4]a)

26-



To get an idea of the intensity variations caused by tumbling, some

numerical examples were computed by means of equations (41). The results

appear in the rotational system. To remain independent of the special

direction of cI and to achieve some symmetry in the curves, all results

are expressed as a function of the amgles _ and _' (fig. 12):

! I

, : s o
2

I

! !

s O

2
I,3)

Results for a cylinder with black ends and diffuse reflecting sides are

given in figures 12 through 15. In figure 13 the sun's direction is
assumed to be above and perpendicular to the tumbling plane (6 j = 90°).

s

If the observer looks from this direction he sees no variations. If he is
i

situated in the rotational plane (6c = 0), °he sees marked variations - no

intensity if the black end polnts towards him, but maximum intensity if

he views the cylinder from the side. From underneath the tumbling plane
I !

(6o _ 0), the closer 6o approaches -90 ° the less does the observer see
I

the illuminated portion of the cylinder surface, and when 6o = -90°, only

the dark side of the c.vlinder _ vis._ble.

Some of the features outlined a_ove occur again in the more general

cases illustrated in figures 14 throggh 16. In figure lh both the sun

(6s = 30o ) and the observer (6o = 15 e) are above the tumbling plane and

thus the intensity meyer drops to zero. On the other hand, if the ob-
server is looking from underneath the tumbling plane (8o = -_5°), as in

figure 15, the intensity observed is in general rather low, even at its

maximum. In figure 16, the sun and the observer are in the tumbling plane.
I

The intensity observed is zero from _ll positions _ ( _ and _ _ _-_ ,

since in these cases only the shadow side of the cylinder is seen. It

should be emphasized that the positions of the maxima of intensity do not

in general agree with the angles _f obtained from the angles _f which

would give a reflection flash in the specular case. These flash positions

are marked by large dots in figures 13 through 16. If the cylinder has

diffuse reflecting ends, the observable intensity can be computed from

equations (33) and (41c). Examples are presented in figures 16 through

21, where in all cases the product of the length and the diameter of the

cylinder is assumed to be a constant. If we compare results for a long

cylinder ( = ) (figs. 17,20) and for a short and thick cylinder (_ = _)

(figs. 18, 21) with the curves for a cylinder with black ends (figs. 16,

19), at the same angles of illumination and observation, we find the greatest

deviations for _ 1
= _ , due to the large surface of the diffuse reflective ends.



The breaks in the curve, particularl_ noticeable in figures 17, 18, and
21, are seen at those positions where either the ends or the side become
visible (or invisible) to the observer.

Appendix

Spinning satellite with specular reflection: Tiros I (1960 _2).

To obtain an idea of the practical applicability of the methods

described above, observations by _bo_watch and Baker-Nunn stations were

searched for reports of flashing outbursts. More complete Moonwatch data

including definite observations of flashing phenomena of Tiros I, avail-

able for July 1960, are presented in table 1. Another set of observationS

by Baker-Nunn stations is presented in table 2. It should be noted, how-

ever, that these films were not exposed for the purpose of obtaining in-

formation on the spinning motion of Tiros. They merely represent examples

recording occasional flashing phenomena on an orientation frame or on a

time exposure. Thus, unfortunately, in all exposures only a portion of

the outbursts appear. The positions in table 2 correspond to the begin-

ning (B), middle (M), or end _E) of £he recorded trail, depending on

where the brightest flashes were see_.

The data presented in table 2 were used to compute u° and the normal
..@

on the reflecting surface [_n' Gn)" Since the position of thevector un

spin axis was approximately known (Bandeen and MBnger, 1960), the angle

R u between u and the spin axis coUld be computed. The results show
n n o

that this angle was close to 90 Thus, reflection from the sides of

Tiros can be assumed. 0nly the obse2vations of May 5 and 6 result in

angles close to 0o, which suggests that the reflections might come from
the ends of the cylinder. The average deviation from 90 (or 0 °) is

about ± 7° • This is not surprising in view of the difficulties of deter-

mining the center of the flash outbursts outlined above and the uncer-

tainty in the direction of R in the _[iagram of Bandeen and M_nger.
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towards sun; ul, direction towards observer; R, spin axis
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Figure 5.--Spinmlng satellite with discrete mirrors at the side,

(Equivalent to spinning polygonal cylinder. )
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side. _ normal vector on reflecting element of the surface-
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Figure 7.--Geometry of the cone of light as specular-reflected by the

side of a spinning cylinder.
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Figure 8.--Tiros II Meteorological Satellite (from NASA Tech. Note

D-1293: Telemetering infrared data from the Tiros

meteorological satellites, J. F. Davis, R. A. Hanel,

R. A. Stampfl, M. G. Strange, and M. R. Townsend)
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Figure 9.--Trails of satellites on Baker-Nunn stationary exposures
a. 1960 B2 (Tiros I) 1960, July 24, Olh 22m 12s UT

b. 1960 B2

c. 1960 82

d. 1960 52
e. 1960 52

1960, June 2, 23h 29m 03s UT

1960, June 2, 23h 29 m 18 s UT

1960, October 16, 08h 38m UT

1962, April 30, 08 h 55m UT
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Figure lO.--Carrier Rocket 1960 _2) of Echo I
(figure from NASAWallops Station HandbookVol. II)
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Figure ll.--Dependence of diffuse reflected light intensity

(equation (38)) by a cylinder on the difference _ H

of the direction angles between sun (_) and

observer (_) in the body system, s-
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Figure 12_--Tumbling cylinder geometry i

Definition of the angles _ and

in the rotational plane system
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NOTICE

This series of Special Reports was instituted under the

supervision of Dr. F. L. Whipple, Director of the Astrophysical

Observatory 6f the Smithsonian Institution, shortly after the

launching of the first artificial earth satellite on October 4,

1957. Contributions come from the Staff of the Observatory.

First issued to ensure the immediate dissemination of data for

satellite tracking, the Reports have continued to provide a

rapid distribution of catalogues of satellite observations,

orbital information, and preliminary results of data analyses

prior to formal publication in the appropriate journals.

Edited and produced under the supervision of Mr. E. N.

Hayes, the Reports are indexed by the Science and Technology

Division of the Library of Congress, and are regularly dis-

tributed to all institutions participating in the U.S. space

research p_ogram and to individual scientists who request them

from the Administrative Officer, Technical Information,

Smithsonian Astrophysical Observatory, Cambridge 38,

Massachusetts.




